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PROJECTIVE-SYMMEIRIC SPACES*
R. F. Reynolds and A, H, Thompson

Introduction.

Gy. Soos [l] and B, Gupta [2] have discussed the properties
of Riemannian spaces Vn (n>2) 1in which the first covariant deri-
vative of Weyl's projective curvature tensor is everywhere zero; such
spaces they call Projective-Symmetric spaces. In this paper we wish
to point out that all Riemannian spaces with this property are

symmetric in the sense of Cartan [3]; that is the first covariant

| derivative of the Riemann curvature tensor of the space vanishes,

| Further sections are devoted to a discussion of projective-symmetric
affine spaces A, with gymmetric affine connexion. Throughout, the
geometrical quantities discussed will be as defined by Eisenhart (4]

and ([5].

l. Projective-Symmetric Riemannian Spaces.

For a Vn , Weyl's projective curvature tensor wabcd is

a a 2 a
Wed ™ Rbed " o1 {8 (d Relb! »

a a
where R .4 18 the curvature tensor, and Ry. = R ., the Riccl
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2.

tensor, of the space, The Vn is a projective-symmetric space if

and only if
a
(1.1) W bedje 0.
We define the tensor Ua d by
a be a a 1 a
U4 8 Wpeg = T Rg-sRSGH,

where R = Raa , and from (1.,1) it follows that if the space is

projective-symmetric, then
a
(1.2) U d;e - 0 .

For n>2, equation (1.2) and the twice-contracted Bianchi Identity

a 1
R = constant ,
and thus e have Ry, = 0. With (L.1) this gives the result
]

a a
0 = ¥ bcd;e< >R bedse 0,

from which follows:-

Theorem 1.

A Riemannian space V, (n>2) is a projective-symmetric space

1if and only if it is symmetric in the sense of Cartam [3].

Forn = 2, wabcd is identically zero and (l,1) is a degene-

rate condition in a V,., We remark however that a V, 1is a symmetric
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space if and only if it has constant scalar curvature R.

The results of Gupta [2] follow immediately since they are
trivially true for symmetric spaces, The paper of Soos [2] contains
theorems for projective-symmetric spaces which are generalisations of

results found by Sinjukow [6] for symmetric spaces.

2., Affine Spaces With Symmetric Connexion.

For the remainder of this paper we consider the application
of the preceding theorem in an Affine space with symmetric connexion.
Such a space we will denote by An' its connexion by Fabc, and
covariant differentiation with respect to this connexion by ";",

The curvature tensor of An is defined

a a h a
(2.1) B'peg = 2T brd,e] 2r bia T eln *
for which the identities
inn a & -
(2.2) Bo(edy ™ Bpeay ™ %0
and Bianchi's identity

a .

(2.3) B bledze] = 9
hold. The analogue of the Ricci tensor for an An is Bbc = ﬁabca

but in this case it is not necessarily symmetric; it follows from

(2.2) that

(2.4) Sea ™ -ZB[cd] ’

where Sc = %

4 acd® From (2.3) we have also



Slcd;e]
(2.5)

a
B bedja ZBbICSd] *

Weyl's projective curvature tensor for an A, is

a - R8 -1 .a -2 a __2 a
(2:6)  Wied ™ Bbed “ o O b Scd T BT Bored a1 T 327 Sbicd a1 ¢

This tensor is invariant for projective transformations of the space
and its vanishing implies that the An has the same paths as flat

space [5]. By a projective-symmetric affine space we will mean an

An (n>2) such that

a
(2.7) W cdse 0,

throughout; an An is symmetric [3] if and only if

a
(2.8) B bed;e 0,

at all points.

Equation (2.8) implies that every symmetric An is a projec-
tive-symmetric An. Such projective-symmetric spaces we will call
degenerate, and from Thgorem 1 we see that all projective-symmetric
Riemannian spaces Vn (n>2) are degenerate in this sense. We will
show that this i{s not true for a general An and will consider its

validity in relation to certain sub-classes of Affine spaces.

3. A Non-Degenerate Projective-Symmetric A,.

Consider the An with connexion coefficients
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(3.1) e = 28 ¥ »

a
in a coordinate system {x } such that

3
— ¢ = (.,
axa (o]

The latter condition is expressed covariantly as

(3.2) Wc;d + 2¢c¢d = 0,

The An is projectively related to flat space; its projective curva-
ture tensor vanishes and therefore it is a projective~symmetric

space. From (2.1) we have for this A

a a
Boea = W S (cVq) o

and using (3.2)

a a
B bedse _4we B bed *

For *e # 0, the curvature tensor of the space is non-zero and we

have the result:-

Theorem 2.

There exist projective-symmetric A,'s which are non-degenerate,

3. 222 Decgggosable An'

If two spaces A, and A, are given with coordinates

A
X (2,8,Y = 1,2904.,m) and x ¢ (A,B,C = m+l,...,n) and the connexions

a
raBY and PAfc, then the A, with coordinates x : (a,b,c = 1,2,,..,n)
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a o A
and connexion I, 2 {r By? T BC}’ is called the product of A,

and A _ . An A, that is a product space is sald to be decomposable.

A geometric object in a decomposable An is decomposable if and only

1f its components with respect to the special coordinates are always
zero when they have indices from both ranges, and the components

belonging to the subspace A (An-m) are functions of xé (iA) only.
In a decomposable A, Babcd' By and their covariant derivatives

a
are decomposable; Wabcd and W bedje BaTe not in general decomposable.

Theorem 3,

A projective~symmetric A, which is decomposable is neces-

sarily degenerate.

We assume that A, = {A X A} where indices a,B,y = lLiesom
relate to A,, and A,B,C = mtl,....n relate to A,_.. From the

definition of the projective-curvature tensor we have for the decom-

posable Aj.
a , 1 .«
(3.1) W BCD " "1 $ 8 SCD ’
and
a ) ) 1

The assumption that A, 1s a projective-symmetric space gives with (3.1)

Scp;e ™ O

and therafore in (3.2)
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BDE

Similarly we have

BBG;C 0,

and since Bbd;e is a decomposable tensor of the A, it follows that

Bhaze = 0 -

With the above, the differentiation of (2.5) gives

a a
0 = Wycdse ™ B bedje *

and the decomposable A, 1is a symmetric space. Q.E.D.

4, EEE grojective-Snggtric Wn.

An A, in which there exists a symmetric two index temnsor

Sab of rank n such that
(4.1) 8abjd = ~2%c 8ab »

for some covariant vector ¢, 1is called a W, and was first discussed
ab ab a
by Weyl [7]. Define the contravariant tensor g by 8 8pe = S ¢

then from (4.1)

b b
(4.1) sa sc ™ 24 t;"l .

b
We can use g, (ga ) to define a correspondence between covariant

and contravariant quantities in An; in fact 1if b is a gradient
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vector ¢ . the Wn is a Riemannian space Vn with metric tensor
]

= o .2
&ab e Bape
e e
With wabcd - saewbcd and Babcd 8aeBbcd’ we define
b
(4.2) Tad R cwabcd ’
and
be
(4.3) Qad =8 Babcd *

From the Ricci Identity applied to Bab® and the use of (4.1) and

(4.1a) we have

Blab)ed ™ =2 8gb *#[c;d] °
which yields after contraction
Qag ™ Bag =4 ¢[a;d] »
and
Scd bl -2n¢[c;d] .

We extract the symmetric and anti-symmetric parts of these equations

to obtain
Qad) = B(ad) »
(4.4) Brad] * M[a;d] »

Qraa) = (@=®d[q;q) »

With equation (4.2), the definition of the projective curvature tensor
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gives

n-2 1
Tab = Qab = =5 Sap + —— {Bgp = Bgap} »
n“-1 n~1

be bec ’
where B = g By, = g Qp.. Frequent use of the relations

(2.4) and (4.4) give the decompositiong

Teap) = == (Beab) - < &ap B}

(4.5)
2-
T b bd B .
(ab] a(a-1) [ab]

Lemma 1,

In a projective-symmetric W, (n>2) Tab;c = 0,
Proof,

ef d d ef
Tabse ™ 8ad 8 W afbje * 8adjc Tp+8 ;c Yaefb *

From (4.1) and (4.la) the sum of the second and third terms on the

right hand side of the above equation is zero. Hence

ef d
Tabse ™ 8ad 8 W efbje »

which vanishes 1f W, is projective-symmetric, Q.E.D.

Lemma 1 applied to the second equation of (4.5) gives
(4.6) B[‘b];c = ( »
and with (4.6) in the first equation of (4.5)

(4.7) Bapsc = = Bab (B,c2B4c)
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Lempa 2.

In a projective-symmetric W, (n>2) Bypse] = 0

Broof.
We have
a a n=2 2 _
0 = Wyped;a = B opedsa ™ n-1 Scdsb ~ a-1 Bp(eszd]

From (2,3) and (4.6) Scdie ™ 0, and we see that
a 2
B pedsa ™ a1 Bplezd]
However from the contracted Bianchi Ideantity (2,5) we have

a
B bed;a = 2Bp[c;d] o

and the result of the lemma follows.

From lemma 2 and (4,.,7) we have

and after contraction
(‘..8) (!\-1) {B’c - ZB¢C} - 0 .

Referring to equation (4.7) we deduce that Babse ™ 0, and therefore

for a Wn

a a
0 = Wbcd;e< >B bedje = 0
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Iheoxem 4.

Every projective-symmetric W = is degenerate.
We also remark that 1f B ¥ O in (4.3) then ¢, 1is neces-

sarily a gradient:-

Theorem 5.

The "scalar curvature" B of a projective-symmetric W  which

is not a Riemannian space is necesgarily zero.
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